KADATH
matrice.cpp
1 /*
2  Copyright 2017 Philippe Grandclement
3 
4  This file is part of Kadath.
5 
6  Kadath is free software: you can redistribute it and/or modify
7  it under the terms of the GNU General Public License as published by
8  the Free Software Foundation, either version 3 of the License, or
9  (at your option) any later version.
10 
11  Kadath is distributed in the hope that it will be useful,
12  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  GNU General Public License for more details.
15 
16  You should have received a copy of the GNU General Public License
17  along with Kadath. If not, see <http://www.gnu.org/licenses/>.
18 */
19 
20 #include "headcpp.hpp"
21 #include "matrice.hpp"
22 #include "array.hpp"
23 #include "array_math.hpp"
24 namespace Kadath {
25 //Destructeur des quantites derivees
26 
28  if (band != 0x0) delete band ;
29  if (lu != 0x0) delete lu ;
30  if (permute != 0x0) delete permute ;
31  band = 0x0 ;
32  lu = 0x0 ;
33  permute = 0x0 ;
34 }
35 
36 // sets to zero in std
38  del_deriv() ;
39  Index index(sizes) ;
40  do std->set(index) = 0 ;
41  while (index.inc()) ;
42 }
43 
44 // Standard Constructor
45 Matrice::Matrice (int i, int j) : sizes(2) {
46  sizes.set(0) = i ; sizes.set(1) = j ;
47  std = new Array<double>(sizes) ;
48  kl = 0 ;
49  ku = 0 ;
50  band = 0x0 ;
51  lu = 0x0 ;
52  permute = 0x0 ;
53 }
54 
55 
56 // Copy constructor
57 Matrice::Matrice (const Matrice & source) : sizes(source.sizes) {
58  kl = source.kl ;
59  ku = source.ku ;
60  std = new Array<double>(*source.std) ;
61  if (source.band != 0x0) band = new Array<double>(*source.band) ;
62  else band = 0x0 ;
63  if (source.lu != 0x0) lu = new Array<double>(*source.lu) ;
64  else lu = 0x0 ;
65  if (source.permute != 0x0) permute = new Array<int>(*source.permute) ;
66  else permute = 0x0 ;
67 }
68 
69 
70 // Copy from a 2 dimensional array
71 Matrice::Matrice (const Array<double> & source) : sizes(source.get_dimensions()) {
72  std = new Array<double> (source) ;
73  assert (sizes.get_ndim()==2) ;
74  kl = 0 ;
75  ku = 0 ;
76  band = 0x0 ;
77  lu = 0x0 ;
78  permute = 0x0 ;
79 }
80 
81 // destructor
83  del_deriv() ;
84  delete std ;
85 }
86 
87 // Assignement to a double in the std representation
88 void Matrice::operator= (double x) {
89  del_deriv() ;
90  *std = x ;
91 }
92 
93 // Assignement to another matrix
94 void Matrice::operator= (const Matrice &source) {
95 
96  assert (sizes==source.sizes) ;
97  del_deriv() ;
98  delete std ;
99  std = new Array<double>(*source.std) ;
100  kl = source.kl ;
101  ku = source.ku ;
102  if (source.band !=0x0)
103  band = new Array<double>(*source.band) ;
104  if (source.lu !=0x0)
105  lu = new Array<double>(*source.lu) ;
106  if (source.permute !=0x0)
107  permute = new Array<int>(*source.permute) ;
108 }
109 
110 // Assignement to a 2dimensional array
111 void Matrice::operator= (const Array<double> &source) {
112 
113  assert (sizes == source.get_dimensions()) ;
114  del_deriv() ;
115  delete std ;
116  std = new Array<double>(source) ;
117  kl = 0 ;
118  ku = 0 ;
119 }
120 
121 // Read/write of an element
122 double& Matrice::set (int i, int j) {
123  del_deriv() ;
124  Index index (sizes) ;
125  index.set(0) = i ;
126  index.set(1) = j ;
127  return std->set(index) ;
128 }
129 
130 void Matrice::copy_inside (int i, int j, const Matrice& so) {
131  del_deriv() ;
132  Index index_so (so.sizes) ;
133  Index index (sizes) ;
134  do {
135  index.set(0) = index_so(0) + i ;
136  index.set(1) = index_so(1) + j ;
137  std->set(index) = (*so.std)(index_so) ;
138  }
139  while (index_so.inc()) ;
140 }
141 
142 
143 // Read only of an element
144 double Matrice::operator() (int i, int j) const {
145  Index index (sizes) ;
146  index.set(0) = i ;
147  index.set(1) = j ;
148  return (*std)(index) ;
149 }
150 
151 //Display
152 ostream& operator<< (ostream& flux, const Matrice & source) {
153 
154  flux << "Matrix " << source.sizes(0) << " * " << source.sizes(1) << endl ;
155  for (int i=0 ; i<source.sizes(0) ; i++) {
156  for (int j=0 ; j<source.sizes(1) ; j++)
157  flux << source(i, j) << " " ;
158  flux << endl ;
159  }
160  flux << endl ;
161  return flux ;
162 }
163 
164 // Computes the banded representation : LAPACK storage
165 void Matrice::set_band (int u, int l) const {
166  if (band != 0x0) return ;
167  else {
168  int n = sizes(0) ;
169  assert (n == sizes(1)) ;
170 
171  ku = u ; kl = l ;
172  int ldab = 2*l+u+1 ;
173  band = new Array<double>(ldab*n) ;
174  *band = 0 ;
175 
176  for (int i=0 ; i<u ; i++)
177  for (int j=u-i ; j<n ; j++)
178  band->set(j*ldab+i+l) = (*this)(j-u+i, j) ;
179 
180  for (int j=0 ; j<n ; j++)
181  band->set(j*ldab+u+l) = (*this)(j, j) ;
182 
183  for (int i=u+1 ; i<u+l+1 ; i++)
184  for (int j=0 ; j<n-i+u ; j++)
185  band->set(j*ldab+i+l) = (*this) (i+j-u, j) ;
186 
187  }
188  return ;
189 }
190 
191 //LU decomposition : LAPACK storage
192 void Matrice::set_lu() const {
193  if (lu != 0x0) {
194  assert (permute != 0x0) ;
195  return ;
196  }
197  else {
198  // LU decomposition
199  int n = sizes(0) ;
200  int ldab, info ;
201  permute = new Array<int>(n) ;
202 
203  // Case of a banded matrix
204  if (band != 0x0) {
205  ldab = 2*kl+ku+1 ;
206  lu = new Array<double>(*band) ;
207 
208  F77_dgbtrf(&n, &n, &kl, &ku, lu->set_data(), &ldab, permute->set_data(), &info) ;
209  }
210  else { // General matrix
211  ldab = n ;
212  lu = new Array<double>(*std) ;
213 
214  F77_dgetrf(&n, &n, lu->set_data(), &ldab, permute->set_data(), &info) ;
215  }
216  }
217  return ;
218 }
219 
220 // Solution of Ax = B : use LAPACK et the LU decomposition.
222 
223  assert(lu != 0x0) ;
224  assert(permute != 0x0) ;
225 
226  int n = source.get_size(0) ;
227  assert (sizes(1) == n) ;
228  int ldab, info ;
229  char trans ;
230  int nrhs = 1 ;
231  int ldb = n ;
232 
233  Array<double> res(source) ;
234 
235  if (band != 0x0) { //Banded matrix
236  ldab = 2*kl+ku+1 ;
237  trans = 'N' ;
238  F77_dgbtrs(&trans, &n, &kl, &ku, &nrhs, lu->set_data(),
239  &ldab, permute->set_data(), res.set_data(), &ldb, &info);
240  }
241  else { // General case
242  ldab = n ;
243  trans = 'N' ; //index optimization
244  F77_dgetrs(&trans, &n, &nrhs, lu->set_data(), &ldab, permute->set_data(),
245  res.set_data(), &ldb, &info) ;
246  }
247 
248  return res ;
249 }
250 
251 
252 // Eighenvalues of the matrix, use of LAPACK :
254 
255  char jobvl = 'N' ;
256  char jobvr = 'N' ;
257 
258  int n = sizes(0) ;
259  assert (n == sizes(1)) ;
260 
261  double* a = new double [n*n] ;
262  Index index(sizes) ;
263  for (int i=0 ; i<n*n ; i++) {
264  a[i] = (*std)(index) ;
265  index.inc() ;
266  }
267 
268  int lda = n ;
269  double* wr = new double[n] ;
270  double* wi = new double[n] ;
271 
272  int ldvl = 1 ;
273  double* vl = 0x0 ;
274  int ldvr = 1 ;
275  double* vr = 0x0 ;
276 
277  int ldwork = 3*n ;
278  double* work = new double[ldwork] ;
279 
280  int info ;
281 
282  F77_dgeev(&jobvl, &jobvr, &n, a, &lda, wr, wi, vl, &ldvl, vr, &ldvr,
283  work, &ldwork, &info) ;
284 
285 
286  Dim_array res_out (2) ;
287  res_out.set(0) = 2 ;
288  res_out.set(1) = n ;
289  Array<double> result(res_out) ;
290  Index index_out(res_out) ;
291  for (int i=0 ; i<n ; i++) {
292  result.set(index_out) = wr[n-i-1] ;
293  index_out.inc() ;
294  result.set(index_out) = wi[n-i-1] ;
295  index_out.inc() ;
296  }
297 
298  delete [] wr ;
299  delete [] wi ;
300  delete [] a ;
301  delete [] work ;
302 
303  return result ;
304 
305 }
306 
307 // Eighenvectors of the matrix (use of LAPACK) :
309 
310  assert (std != 0x0) ;
311 
312  char jobvl = 'V' ;
313  char jobvr = 'V' ;
314 
315  int n = sizes(0) ;
316  assert (n == sizes(1)) ;
317 
318  double* a = new double [n*n] ;
319  Index index(sizes) ;
320  for (int i=0 ; i<n*n ; i++) {
321  a[i] = (*std)(index) ;
322  index.inc() ;
323  }
324 
325  int lda = n ;
326  double* wr = new double[n] ;
327  double* wi = new double[n] ;
328 
329  int ldvl = n ;
330  double* vl = new double[ldvl*ldvl] ;
331  int ldvr = n ;
332  double* vr = new double[ldvl*ldvl] ;
333 
334  int ldwork = 4*n ;
335  double* work = new double[ldwork] ;
336 
337  int info ;
338 
339  F77_dgeev(&jobvl, &jobvr, &n, a, &lda, wr, wi, vl, &ldvl, vr, &ldvr,
340  work, &ldwork, &info) ;
341 
342 
343  Matrice res (n,n) ;
344 
345  int conte = 0 ;
346  for (int i=0 ; i<n ; i++)
347  for (int j=0 ; j<n ; j++) {
348  res.set(j,n-i-1) = vr[conte] ;
349  conte ++ ;
350  }
351 
352  delete [] wr ;
353  delete [] wi ;
354  delete [] a ;
355  delete [] work ;
356  delete [] vl ;
357 
358  return res ;
359 }
360 
361 // Transposed matrix
363 
364  int nbl = sizes(1) ;
365  int nbc = sizes(0) ;
366 
367  Matrice resu(nbc, nbl) ;
368 
369  Index index (std->get_dimensions()) ;
370  for (int i=0; i<nbc; i++)
371  for (int j=0; j<nbl; j++) {
372  index.set(0) = j ;
373  index.set(1) = i ;
374  resu.set(i,j) = (*std)(index) ;
375  }
376  return resu ;
377 }
378 
379 
380 void Matrice::operator+=(const Matrice& a) {
381  assert((std != 0x0)&&(a.std != 0x0)) ;
382  std->operator+=(*a.std) ;
383 }
384 
385 void Matrice::operator-=(const Matrice& a) {
386  assert((std != 0x0)&&(a.std != 0x0)) ;
387  std->operator-=(*a.std) ;
388 }
389 
390 void Matrice::operator+=(double x) {
391  assert(std != 0x0);
392  std->operator+=(x) ;
393 }
394 
395 void Matrice::operator-=(double x) {
396  assert(std != 0x0);
397  std->operator-=(x) ;
398 }
399 
400 void Matrice::operator*=(double x) {
401  assert(std != 0x0);
402  std->operator*=(x) ;
403 }
404 
405 void Matrice::operator/=(double x) {
406  assert(std != 0x0);
407  assert(x != 0) ;
408  std->operator/=(x) ;
409 }
410 
411 Matrice operator+ (const Matrice& a, const Matrice& b) {
412  assert((a.std != 0x0) && (b.std != 0x0)) ;
413  Matrice res(*a.std+*b.std) ;
414  return res ;
415 }
416 
417 Matrice operator- (const Matrice& a, const Matrice& b) {
418  assert((a.std != 0x0) && (b.std != 0x0)) ;
419  Matrice res(*a.std-*b.std) ;
420  return res ;
421 }
422 
423 Matrice operator- (const Matrice& a) {
424  assert(a.std != 0x0) ;
425  Matrice res(-*a.std) ;
426  return res ;
427 }
428 
429 
430 Matrice operator* (const Matrice& a, double x) {
431  assert(a.std != 0x0) ;
432  Matrice res(*a.std*x);
433  return res ;
434 }
435 
436 Matrice operator* (double x, const Matrice& a) {
437  assert(a.std != 0x0) ;
438  Matrice res(*a.std*x);
439  return res ;
440 }
441 
442 Matrice operator* (const Matrice& aa, const Matrice& bb) {
443 
444  int nbla = aa.sizes(1) ;
445  int nbca = aa.sizes(0) ;
446  int nbcb = bb.sizes(0) ;
447 
448  assert( nbca == bb.sizes(1)) ;
449 
450  Matrice resu(nbla, nbcb) ;
451 
452  for (int i=0; i<nbla; i++)
453  for (int j=0; j<nbcb; j++) {
454  double sum = 0 ;
455  for (int k=0; k<nbca; k++) {
456  sum += aa(i,k) * bb(k, j) ;
457  }
458  resu.set(i,j) = sum ;
459  }
460  return resu ;
461 }
462 
463 Matrice operator/ (const Matrice& a, double x) {
464  assert (x != 0) ;
465  assert(a.std != 0x0) ;
466  Matrice res(*a.std/x);
467  return res ;
468 }}
reference set(const Index &pos)
Read/write of an element.
Definition: array.hpp:186
pointer set_data()
Direct accessor to the data, read/write version.
Definition: array.hpp:318
int get_size(int i) const
Returns the size of a given dimension.
Definition: array.hpp:331
const Dim_array & get_dimensions() const
Returns the Dim_array of the Array.
Definition: array.hpp:335
Class for storing the dimensions of an array.
Definition: dim_array.hpp:34
int get_ndim() const
Returns the number of dimensions.
Definition: dim_array.hpp:63
int & set(int i)
Read/write of the size of a given dimension.
Definition: dim_array.hpp:54
Class that gives the position inside a multi-dimensional Array.
Definition: index.hpp:38
int & set(int i)
Read/write of the position in a given dimension.
Definition: index.hpp:72
bool inc(int increm, int var=0)
Increments the position of the Index.
Definition: index.hpp:99
Matrix handling.
Definition: matrice.hpp:38
void copy_inside(int i, int j, const Matrice &so)
Copies the elements of so inside the matrice, starting at the position .
Definition: matrice.cpp:130
int kl
Number of lower-diagonals in the band representation.
Definition: matrice.hpp:50
void operator/=(double)
Operator /=.
Definition: matrice.cpp:405
Array< int > * permute
Pointer on the second array of the LU-representation.
Definition: matrice.hpp:62
Dim_array sizes
Dim_array of dimension 2 containing the size of the matrix.
Definition: matrice.hpp:45
void operator-=(const Matrice &)
Operator -=.
Definition: matrice.cpp:385
Array< double > * band
Pointer on the array of the band representation of a square matrix.
Definition: matrice.hpp:58
Array< double > solve(const Array< double > &sec_membre) const
Solves the linear system represented by the matrix.
Definition: matrice.cpp:221
Array< double > val_propre() const
Returns the eigenvalues of the matrix, calculated using LAPACK.
Definition: matrice.cpp:253
Array< double > * lu
Pointer on the first array of the LU-representation.
Definition: matrice.hpp:61
Matrice transpose() const
Computes the transpose matrix.
Definition: matrice.cpp:362
double & set(int i, int j)
Read/write of a particuliar element.
Definition: matrice.cpp:122
Matrice(int size1, int size2)
Standard constructor.
Definition: matrice.cpp:45
void operator*=(double)
Operator *=.
Definition: matrice.cpp:400
void set_band(int up, int low) const
Calculate the band storage of *std.
Definition: matrice.cpp:165
~Matrice()
Destructor.
Definition: matrice.cpp:82
Matrice vect_propre() const
Returns the eigenvectors of the matrix, calculated using LAPACK.
Definition: matrice.cpp:308
void operator=(double x)
Sets all the element of *std to x.
Definition: matrice.cpp:88
Array< double > * std
Pointer on the array of the standard representation.
Definition: matrice.hpp:46
void del_deriv()
Logical destructor : dellocates the memory of the various used representations.
Definition: matrice.cpp:27
void operator+=(const Matrice &)
Operator +=.
Definition: matrice.cpp:380
void set_lu() const
Calculate the LU-representation, assuming the band-storage has been done.
Definition: matrice.cpp:192
int ku
Number of upper-diagonals in the band representation.
Definition: matrice.hpp:49
double operator()(int i, int j) const
Read-only of a particuliar element.
Definition: matrice.cpp:144
void annule()
Sets all the coeficients of the *std to 0.
Definition: matrice.cpp:37