KADATH
domain_spheric_time_compact.cpp
1 /*
2  Copyright 2017 Philippe Grandclement
3 
4  This file is part of Kadath.
5 
6  Kadath is free software: you can redistribute it and/or modify
7  it under the terms of the GNU General Public License as published by
8  the Free Software Foundation, either version 3 of the License, or
9  (at your option) any later version.
10 
11  Kadath is distributed in the hope that it will be useful,
12  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  GNU General Public License for more details.
15 
16  You should have received a copy of the GNU General Public License
17  along with Kadath. If not, see <http://www.gnu.org/licenses/>.
18 */
19 
20 #include "headcpp.hpp"
21 #include "utilities.hpp"
22 #include "spheric_time.hpp"
23 #include "array_math.hpp"
24 #include "val_domain.hpp"
25 
26 namespace Kadath {
27 void coef_1d (int, Array<double>&) ;
28 void coef_i_1d (int, Array<double>&) ;
29 int der_1d (int, Array<double>&) ;
30 
31 // Standard constructor
32 Domain_spheric_time_compact::Domain_spheric_time_compact (int numdom, int ttype, double tmmin, double tmmax, double r, const Dim_array& nbr) :
33  Domain(numdom, ttype, nbr), alpha(-0.5/r), tmin(tmmin), tmax(tmmax) {
34  assert (nbr.get_ndim()==2) ;
35  do_coloc() ;
36 }
37 
38 // Constructor by copy
39 Domain_spheric_time_compact::Domain_spheric_time_compact (const Domain_spheric_time_compact& so) : Domain(so), alpha(so.alpha), tmin(so.tmin), tmax(so.tmax) {
40 }
41 
43  fread_be (&alpha, sizeof(double), 1, fd) ;
44  fread_be (&tmin, sizeof(double), 1, fd) ;
45  fread_be (&tmax, sizeof(double), 1, fd) ;
46  do_coloc() ;
47 }
48 
49 // Destructor
50 Domain_spheric_time_compact::~Domain_spheric_time_compact() {}
51 
52 void Domain_spheric_time_compact::save (FILE* fd) const {
53  nbr_points.save(fd) ;
54  nbr_coefs.save(fd) ;
55  fwrite_be (&ndim, sizeof(int), 1, fd) ;
56  fwrite_be (&type_base, sizeof(int), 1, fd) ;
57  fwrite_be (&alpha, sizeof(double), 1, fd) ;
58  fwrite_be (&tmin, sizeof(double), 1, fd) ;
59  fwrite_be (&tmax, sizeof(double), 1, fd) ;
60 }
61 
62 ostream& Domain_spheric_time_compact::print (ostream& o) const {
63  o << "Spheric-time compact" << endl ;
64  o << "time goes from " << tmin << " to " << tmax << endl ;
65  o << "Rmin = " << -0.5/alpha << endl ;
66  o << "Nbr pts = " << nbr_points << endl ;
67  o << endl ;
68  return o ;
69 }
70 
71 
73 
74 
75  Val_domain res (so.der_var(1)) ;
76  switch (bound) {
77  case OUTER_BC :
78  res = res.mult_xm1() ;
79  res = res.mult_xm1() ;
80  res *= -alpha ;
81  break ;
82  case INNER_BC :
83  res = res.mult_xm1() ;
84  res = res.mult_xm1() ;
85  res *= -alpha ;
86  break ;
87  default:
88  cerr << "Unknown boundary case in Domain_spheric_periodic_compact::der_normal" << endl ;
89  abort() ;
90  }
91 return res ;
92 }
93 
94 // Computes the cartesian coordinates
96  for (int i=0 ; i<2 ; i++)
97  assert (coloc[i] != 0x0) ;
98  for (int i=0 ; i<2 ; i++)
99  assert (absol[i] == 0x0) ;
100  for (int i=0 ; i<2 ; i++) {
101  absol[i] = new Val_domain(this) ;
102  absol[i]->allocate_conf() ;
103  }
104  Index index (nbr_points) ;
105  do {
106  absol[0]->set(index) = 1./alpha / ((*coloc[0])(index(0))-1) ;
107  absol[1]->set(index) = (*coloc[1])(index(1)) * (tmax-tmin)/2. + (tmax+tmin)/2. ;
108  }
109  while (index.inc()) ;
110 
111 }
112 
113 // Computes the radius
115 
116  for (int i=0 ; i<2 ; i++)
117  assert (coloc[i] != 0x0) ;
118  assert (radius == 0x0) ;
119  radius = new Val_domain(this) ;
120  radius->allocate_conf() ;
121  Index index (nbr_points) ;
122  do
123  radius->set(index) = 1./alpha/ ((*coloc[0])(index(0))-1) ;
124  while (index.inc()) ;
125 }
126 
127 
128 // Is a point inside this domain ?
129 bool Domain_spheric_time_compact::is_in (const Point& xx, double prec) const {
130 
131  assert (xx.get_ndim()==2) ;
132 
133  bool res = (xx(1) >= -0.5/alpha+prec) ? true : false ;
134  if ((xx(2)<tmin-prec) || (xx(2)>tmax + prec))
135  res = false ;
136  return res ;
137 }
138 
139 // Convert absolute coordinates to numerical ones
141 
142  assert (is_in(abs)) ;
143  Point num(2) ;
144 
145  num.set(1) = 1 + 1./abs(1)/alpha ;
146  num.set(2) = 2./(tmax-tmin)*(abs(2)- (tmax+tmin)/2.) ;
147 
148  return num ;
149 }
150 
151 double coloc_leg(int, int) ;
153 
154  switch (type_base) {
155  case CHEB_TYPE:
157  del_deriv() ;
158  for (int i=0 ; i<ndim ; i++)
159  coloc[i] = new Array<double> (nbr_points(i)) ;
160  for (int i=0 ; i<nbr_points(0) ; i++)
161  coloc[0]->set(i) = -cos(M_PI*i/(nbr_points(0)-1)) ;
162  for (int j=0 ; j<nbr_points(1) ; j++)
163  coloc[1]->set(j) = -cos(M_PI*j/(nbr_points(1)-1)) ;
164  break ;
165  case LEG_TYPE:
167  del_deriv() ;
168  for (int i=0 ; i<ndim ; i++)
169  coloc[i] = new Array<double> (nbr_points(i)) ;
170  for (int i=0 ; i<nbr_points(0) ; i++)
171  coloc[0]->set(i) = coloc_leg(i, nbr_points(0)) ;
172  for (int j=0 ; j<nbr_points(1) ; j++)
173  coloc[1]->set(j) = coloc_leg(j, nbr_points(1)) ;
174  break ;
175  default :
176  cerr << "Unknown type of basis in Domain_spheric_time_compact::do_coloc" << endl ;
177  abort() ;
178  }
179 }
180 
181 // Base for a function symetric in z, using Chebyshev
183 
184  assert (type_base == CHEB_TYPE) ;
185  base.allocate(nbr_coefs) ;
186 
187  Index index(base.bases_1d[0]->get_dimensions()) ;
188 
189  base.def=true ;
190  base.bases_1d[1]->set(0) = CHEB ;
191  for (int j=0 ; j<nbr_coefs(1) ; j++)
192  base.bases_1d[0]->set(j) = CHEB ;
193 }
194 
195 // Base for a function symetric in z, using Legendre
197 
198  assert (type_base == LEG_TYPE) ;
199  base.allocate(nbr_coefs) ;
200 
201  Index index(base.bases_1d[0]->get_dimensions()) ;
202  base.def=true ;
203  base.bases_1d[1]->set(0) = LEG ;
204  for (int j=0 ; j<nbr_coefs(1) ; j++)
205  base.bases_1d[0]->set(j) = LEG ;
206  }
207 
208 // Computes the derivatives with respect to rho,Z as a function of the numerical ones.
209 void Domain_spheric_time_compact::do_der_abs_from_der_var(const Val_domain *const *const der_var, Val_domain **const der_abs) const {
210  // d/dr
211  der_abs[0] = new Val_domain (-der_var[0]->mult_xm1()) ;
212  // d/dt :
213  der_abs[1] = new Val_domain (*der_var[1]*2./(tmax-tmin)) ;
214 }
215 
216 // Rules for the multiplication of two basis.
218 
219  assert (a.ndim==2) ;
220  assert (b.ndim==2) ;
221 
222  Base_spectral res(2) ;
223  bool res_def = true ;
224 
225  if (!a.def)
226  res_def=false ;
227  if (!b.def)
228  res_def=false ;
229 
230  if (res_def) {
231 
232 
233  // Bases in time :
234  res.bases_1d[1] = new Array<int> (a.bases_1d[1]->get_dimensions()) ;
235  switch ((*a.bases_1d[1])(0)) {
236  case CHEB:
237  switch ((*b.bases_1d[1])(0)) {
238  case CHEB:
239  res.bases_1d[1]->set(0) = CHEB ;
240  break ;
241  default:
242  res_def = false ;
243  break ;
244  }
245  break ;
246  case LEG:
247  switch ((*b.bases_1d[1])(0)) {
248  case LEG:
249  res.bases_1d[1]->set(0) = LEG ;
250  break ;
251  default:
252  res_def = false ;
253  break ;
254  }
255  break ;
256 
257  default:
258  res_def = false ;
259  break ;
260  }
261 // Base in r :
262  Index index_0 (a.bases_1d[0]->get_dimensions()) ;
263  res.bases_1d[0] = new Array<int> (a.bases_1d[0]->get_dimensions()) ;
264  do {
265  switch ((*a.bases_1d[0])(index_0)) {
266  case CHEB:
267  switch ((*b.bases_1d[0])(index_0)) {
268  case CHEB:
269  res.bases_1d[0]->set(index_0) = CHEB ;
270  break ;
271  default:
272  res_def = false ;
273  break ;
274  }
275  break ;
276  case LEG:
277  switch ((*b.bases_1d[0])(index_0)) {
278  case LEG:
279  res.bases_1d[0]->set(index_0) = LEG ;
280  break ;
281  default:
282  res_def = false ;
283  break ;
284  }
285  break ;
286  default:
287  res_def = false ;
288  break ;
289  }
290  }
291  while (index_0.inc()) ;
292  }
293 
294  if (!res_def)
295  for (int dim=0 ; dim<a.ndim ; dim++)
296  if (res.bases_1d[dim]!= 0x0) {
297  delete res.bases_1d[dim] ;
298  res.bases_1d[dim] = 0x0 ;
299  }
300  res.def = res_def ;
301  return res ;
302 }
303 }
Class for storing the basis of decompositions of a field.
Bases_container bases_1d
Arrays containing the various basis of decomposition.
void allocate(const Dim_array &nbr_coefs)
Allocates the various arrays, for a given number of coefficients.
bool def
true if the Base_spectral is defined and false otherwise.
int ndim
Number of dimensions.
Class for storing the dimensions of an array.
Definition: dim_array.hpp:34
int get_ndim() const
Returns the number of dimensions.
Definition: dim_array.hpp:63
void save(FILE *) const
Save function.
Definition: dim_array.cpp:32
Class for a 2-dimensional compactified spherical domain and a symetry with respect to the plane .
virtual Val_domain der_normal(const Val_domain &, int) const
Normal derivative with respect to a given surface.
virtual const Point absol_to_num(const Point &) const
Computes the numerical coordinates from the physical ones.
double alpha
Relates the numerical to the physical radii.
virtual void do_absol() const
Computes the absolute coordinates.
virtual void set_cheb_base(Base_spectral &) const
Gives the standard base for Chebyshev polynomials.
Domain_spheric_time_compact(int num, int ttype, double tmmin, double tmmax, double r_int, const Dim_array &nbr)
Standard constructor :
virtual bool is_in(const Point &xx, double prec=1e-13) const
Check whether a point lies inside Domain.
virtual void do_der_abs_from_der_var(const Val_domain *const *const der_var, Val_domain **const der_abs) const
Computes the derivative with respect to the absolute Cartesian coordinates from the derivative with r...
virtual void do_coloc()
Computes the colocation points.
virtual void save(FILE *) const
Saving function.
virtual ostream & print(ostream &o) const
Delegate function to virtualize the << operator.
virtual void do_radius() const
Computes the generalized radius.
virtual void set_legendre_base(Base_spectral &) const
Gives the standard base for Legendre polynomials.
virtual Val_domain mult_xm1(const Val_domain &) const
Multiplication by .
virtual Base_spectral mult(const Base_spectral &, const Base_spectral &) const
Method for the multiplication of two Base_spectral.
Abstract class that implements the fonctionnalities common to all the type of domains.
Definition: space.hpp:60
virtual void del_deriv()
Destroys the derivated members (like coloc, cart and radius), when changing the type of colocation po...
Definition: domain.cpp:77
Val_domain * radius
The generalized radius.
Definition: space.hpp:78
Memory_mapped_array< Val_domain * > absol
Asbolute coordinates (if defined ; usually Cartesian-like)
Definition: space.hpp:76
int ndim
Number of dimensions.
Definition: space.hpp:64
Dim_array nbr_coefs
Number of coefficients.
Definition: space.hpp:66
Dim_array nbr_points
Number of colocation points.
Definition: space.hpp:65
int type_base
Type of colocation point :
Definition: space.hpp:73
Memory_mapped_array< Array< double > * > coloc
Colocation points in each dimension (stored in ndim 1d- arrays)
Definition: space.hpp:75
Class that gives the position inside a multi-dimensional Array.
Definition: index.hpp:38
bool inc(int increm, int var=0)
Increments the position of the Index.
Definition: index.hpp:99
The class Point is used to store the coordinates of a point.
Definition: point.hpp:30
const int & get_ndim() const
Returns the number of dimensions.
Definition: point.hpp:51
double & set(int i)
Read/write of a coordinate.
Definition: point.hpp:47
Class for storing the basis of decompositions of a field and its values on both the configuration and...
Definition: val_domain.hpp:69
double & set(const Index &pos)
Read/write the value of the field in the configuration space.
Definition: val_domain.cpp:171
Val_domain mult_xm1() const
Multiplication by .
Val_domain der_var(int i) const
Computes the derivative with respect to a numerical coordinate.
Definition: val_domain.cpp:670
void allocate_conf()
Allocates the values in the configuration space and destroys the values in the coefficients space.
Definition: val_domain.cpp:209